Compatibility of superparamagnetic iron oxide nanoparticle labeling for 1H MRI cell tracking with 31P MRS for bioenergetic measurements

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superparamagnetic Iron Oxide Nanoparticles as MRI contrast agents for Non-invasive Stem Cell Labeling and Tracking

Stem cells hold great promise for the treatment of multiple human diseases and disorders. Tracking and monitoring of stem cells in vivo after transplantation can supply important information for determining the efficacy of stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be the most effective and safest non-invasive technique for stem cell trackin...

متن کامل

In Vivo MRI Tracking of Polyethylenimine-Wrapped Superparamagnetic Iron Oxide Nanoparticle–Labeled BMSCs for Cartilage Repair

OBJECTIVE To evaluate the feasibility of tracking polyethylenimine (PEI)-wrapped superparamagnetic iron oxide (SPIO) nanoparticle-labeled, bone marrow-derived mesenchymal stem cells (BMSCs) by in vivo magnetic resonance imaging (MRI) in articular cartilage repair in a minipig model. METHODS Eighteen Guizhou minipigs were randomly divided into three groups (groups A, B, and C). In group A, PEI...

متن کامل

Self-Assembled Superparamagnetic Iron Oxide Nanoclusters for Universal Cell Labeling and MRI

Superparamagnetic iron oxide (SPIO) nanoparticles have been widely used in a variety of biomedical applications, especially as contrast agents for magnetic resonance imaging (MRI) and cell labeling. In this study, SPIO nanoparticles were stabilized with amphiphilic low molecular weight polyethylenimine (PEI) in an aqueous phase to form monodispersed nanocomposites with a controlled clustering s...

متن کامل

Cell Labeling and Targeting with Superparamagnetic Iron Oxide Nanoparticles.

Targeted delivery of cells and therapeutic agents would benefit a wide range of biomedical applications by concentrating the therapeutic effect at the target site while minimizing deleterious effects to off-target sites. Magnetic cell targeting is an efficient, safe, and straightforward delivery technique. Superparamagnetic iron oxide nanoparticles (SPION) are biodegradable, biocompatible, and ...

متن کامل

Essential Elements to Consider for MRI Cell Tracking Studies with Iron Oxide-based Labeling Agents.

Personalized diagnosis and treatment with allogenic or autologous cells have been intensively investigated over the past decade. Despite the promising findings in preclinical studies, the clinical results to date have been largely disappointing. Some critical issues remain to be solved, such as how to monitor the migration, homing, survival, and function of the transplanted cells in vivo. In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: NMR in Biomedicine

سال: 2010

ISSN: 0952-3480

DOI: 10.1002/nbm.1545